
YZ WINDOWS 0.3.5
http://yz-windows.sourceforge.net

API Documentation and Specification
Woodley Packard

1. Introduction
i. Abstract

The YZ Windowing System is an API (Application Programming Interface) to the man-
agement of windows and the drawing of graphics on personal computers. It can be used in a
way similar to Xlib, the MacOS toolbox, the MS Windows API, or any number of other inter-
faces — however, YZ is constructed to be a a front end for a lower level windowing system
(although it can run as the lowest level window management provider as well under certain
environments, specifically Linux with framebuffer and devfs support). It is in some ways
comparable to toolkits such as GLUT, which provide a uniform API to windowing across all
supported platforms. However, YZ [will be] more flexible than GLUT, being designed not as
a quick-and-dirty hack to get an OpenGL context, but as a more complete and usable win-
dowing system.

ii. Supported platforms
Currently, MacOS is the only platform with a conforming libyz 0.3.5. There is a version

of YZ to run on the Linux Framebuffer which is fairly close to 0.3.5. It is also likely that in the
[near?] future libyz will be available on some other platforms. Thus, a program written for
the YZ API should [theoretically] be able to compile on any supported platforms without
change to source code.

There is also a project to create Java bindings for YZ - for more information about YZ for
Java (JYZ), see http://jyz.sourceforge.net.

For more information about YZ for Linux Framebuffer (KYZ) or YZ for MacOS (MacYZ),
see http://yz-windows.sourceforge.net.

Some small steps have been taken in the direction of a libyz for X Windows, too (XYZ).

iii. Conventions
This document describes the functionality of version 0.3.4 the YZ Windowing API. It is

broken down into three sections: this introduction, the specification, and a few examples.
Sections are numbered 1, 2, 3, and subheadings are numbered i, ii, iii, iv, etc. Code listings in
standard C appear in indented monotype font, like this:

void yzSomeFunctionWhichDoesntExist1i(int param);

In general, the end of the name of a graphics function signifies the arguments it takes. For
example, the function yzLine2i2i() takes two pairs of integers, while the function
yzPenColor3i() takes three integers. However, the names of windowing functions do not fol-
low this rule; for example, to select a window for drawing, you simply use
yzSelectWindow().

As of YZ Windows 0.2.0, the graphical functions are also available as plain names, e.g.
yzLine(). These aliases are defined as macros in the relevant header files.

iv. Conformant Implementations
A “conformant implementation” is one which provides every function defined in this

specification. An implementation may choose to always return an error from any functions
marked “Optional”, thus not truly implementing them. Such functions shall be called “fake
implementation functions”; however, it is essential that every function be available in some
form in a “conformant” implementation, so that link errors do not occur. Any program writ-
ten for the YZ API should successfully link to a “conformant implementation”. An imple-
mentation may be called “complete” if it uses no fake implementation functions.

v. Definitions
A “window” is user-distinguishable area on the screen, usually surrounded by some

border and with a title on top, into which the owning application program can draw graph-
ics.

Each window has associated with it a current “pen”, which describes the color of graph-
ics to be drawn, the size of lines to be drawn, and possibly the starting location of the next
line (called the pen’s location).

A “pointer” is the combination of a physical mouse and an on-screen cursor. When a
given window has a pointer’s focus (i.e. the pointer is within the window), the owning
application can query the pointer for location, clicks, etc, and can change its shape or hide it.

A “font” is a collection of shapes of characters which can be used to render text into a
window. A given incarnation of a font has associated with it a size and attributes such as
bold or italics.

An “event” is an action performed by the user which a program may respond to. An
event has a type, such as “mouse click,” and data, such as “at 201, 73.” The data associated
with an event will vary according to its type.

2. Specification
i. Data Structures

typedef struct color_t
{

unsigned short r, g, b, a; // red, green, blue, and alpha values
} color_t;

typedef struct pen_t
{

unsigned short x, y; // where next draw will take place if not specified
unsigned short size; // width of next line to be drawn
color_t color; // color of next graphic to be drawn

} pen_t;

typedef struct cursor_t
{

color_t *data; // width x height array of cursor information
int width, height, hotx, hoty; // width and height of the cursor,

} cursor_t; // and also where in the bitmap the hotspot is

typedef struct event_t
{

int type;
int button, x, y; // which button the click was, and where it was
int mouse, x2, y2; // which mouse it was, and where the drag ended
int key; // the ascii code of the key pressed, or a special key code
// this structure will expand as more types of events are added:
int unused[57];

} event_t;

typedef struct font_t
{

char name[128]; // the name-string of the font. either “system” or “fixed”.
int size; // height of a character. unused.
int attr; // bold, italics, etc. unused.
void *impl_data; // each implementation will store fonts in its own way

} font_t;

typedef struct window_t
{

unsigned long wseq; // window ID number
unsigned long res1; // unused
char name[64]; // the window’s name
unsigned short width, height; // the window’s height and width

struct pen_t *pen; // the current pen
struct font_t *font; // the current font

/* implementation specific data may be stored here */
/* possibly including an event queue */
void *impl_data;

} window_t;

ii. Windowing Functions

window_t *yzNewWindow(char *name, unsigned short width, unsigned short height);

Creates a new window. The window should be entitled by the first parameter, and have
width and height as given by the second and third parameters.

Returns a pointer to the window created on success.
Returns NULL (0) on failure.

int yzDeleteWindow(window_t *window);

Deletes the window specified as the parameter, erasing it from the screen if necessary. If
the specified window is currently selected, the selection is changed to NULL.

Returns 0 on success.
Returns -1 on failure (if, for example, the parameter is not a valid window).

window_t *yzSelectWindow(window_t *window);

Selects the specified window for all future drawing operations until another window is
selected.

Returns a pointer to the previously selected window on success (or NULL if no window
was previously selected).

Returns NULL on failure (if, for example, the parameter is not a valid window).

iii. Pointer Functions

int yzQueryPointer(int *x, int *y);

Queries the state and location of the pointer. On success, the x location of the pointer (as
measured from the upper left corner of the currently selected window) is stored in the loca-
tion pointed to by “x”, and the y location is stored in the location pointed to by “y”.

If “x” is NULL, no value is stored in it; similarly, if “y” is NULL, no value is stored in it.
These “failures” do not affect the overall success or failure of the function call.

yzQueryPointer() fails and returns -1 if the pointer is not within the currently selected
window, i.e. the window does not have the focus (or there is no selected window).
Otherwise, yzQueryPointer returns values as follows:

If the pointer has not moved since the last call to yzQueryPointer(), and the mouse but-
ton has not changed state, the return value is 0.

Otherwise if the mouse has moved, but the button state has not changed, the return
value is 1.

Otherwise, if the mouse button went down, the return value is 2.
Otherwise, the mouse button went up and the return value is 3.

int yzHideCursor();

Attempts to hide the cursor. Fails if the pointer is not within the selected window (i.e.
the window does not have the focus). On success, 0 is returned. Otherwise, -1 is returned.

int yzShowCursor();

Attempts to show the cursor. Fails if the pointer is not within the selected window (i.e.
the window does not have the focus). On success, 0 is returned. Otherwise, -1 is returned.

int yzSetCursor(cursor_t *cursor);

Attempts to reshape the cursor. Fails if the pointer is not within the selected window
(i.e. the window does not have the focus). On success, 0 is returned and the cursor’s shape
changes to that specified by the parameter. Otherwise, -1 is returned.

Note that an implementation need not take into account all the data provided by the
cursor_t structure. Indeed, most cursor drivers support only a very limited range of colors,
or even only black-and-white. In these cases, the implementation should simply provide as
close an approximation to the requested cursor as possible.

int yzWriteCursor(cursor_t *crsr, char *filename);

Optional.
Writes the specified cursor structure to a file named “filename”. The format of the file is

as follows: 2 bytes of width, 2 bytes of height, 2 bytes of hotx, 2 bytes of hoty, then
width*height*sizeof(color_t) bytes of bitmap data. Byte-ordering should be big-endian.

Returns 0 on success.
Returns -1 on failure (for example, if the file cannot be created).

cursor_t *yzNewCursor(int width, int height);

Creates a blank new cursor structure with size width*height. The hotx and hoty compo-
nents should be initialized to width/2 and height/2, respectively.

Returns the address of the newly created cursor structure on success.
Returns NULL on failure (for example, insufficient memory available).

cursor_t *yzLoadCursor(char *filename);

Optional.
Allocates a cursor structure and reads a cursor in from the file “filename”. The format is

identical to that described under “yzWriteCursor()”.
Returns the address of the newly allocated cursor structure on success.
Returns NULL on failure (for example, the file didn’t exist).

iv. Drawing Functions
Note that in usually the return values of these functions will not be checked.

int yzLine2i2i(int x1, int y1, int x2, int y2);
#define yzLine yzLine2i2i

Draws a line in the selected window from point (x1, y1) to point (x2, y2), using the color
and size specified in the selected window’s pen structure.

Returns 0 on success and -1 on failure.

int yzRect2i2i(int x1, int y1, int x2, int y2);
#define yzRect yzRect2i2i

Draws a solid rectangle in the selected window with left edge x1, right edge x2, top
edge y1, and bottom edge y2, in the color specified in the selected window’s pen structure.

Returns 0 on success and -1 on failure.

int yzOutlineRect2i2i(int x1, int y1, int x2, int y2);
#define yzOutlineRect yzOutlineRect2i2i

Draws the outline of a rectangle in the selected window with left edge x1, right edge x2,
top edge y1, and bottom edge y2, in the color specified in the selected window’s pen struc-
ture.

Returns 0 on success and -1 on failure.

int yzClear();

Paints the entire selected window with the color specified in the selected window’s pen
structure. Returns 0 on success and -1 on failure.

int yzPixel2i1c(int x, int y, color_t c);
#define yzPixel yzPixel2i1c

Plots a single pixel at point (x, y) in the selected window, using the color specified by
the 3rd parameter “c”.

Returns 0 on success and -1 on failure.

int yzPixel2i3i(int x, int y, int red, int green, int blue);

Plots a single pixel at point (x, y) in the selected window, using the color specified by
the parameters “red”, “green”, and “blue”.

Returns 0 on success and -1 on failure.

int yzPenColor1c(color_t c);

Sets the color entry in the pen structure of the selected window to be equal to “c”.
Returns 0 on success and -1 on failure.

int yzPenColor3i(int r, int g, int b);
#define yzPenColor yzPenColor3i

Sets the red, green, and blue entries of the color entry in the pen structure of the selected
window to be “r”, “g”, and “b”, respectively. Sets the alpha entry to 0xFFFF.

Returns 0 on success and -1 on failure.

int yzPenColor4i(int r, int g, int b, int a);

Sets the red, green, blue, and alpha entries of the color entry in the pen structure of the
selected window to be “r”, “g”, “b”, and “a”, respectively.

Returns 0 on success and -1 on failure.

int yzPenSize1i(int s);
#define yzPenSize yzPenSize1i

Sets the diameter in pixels of the pen used to draw lines, unfilled circles, etc.
Returns 0 on success and -1 on failure.

int yzCircle3i(int x, int y, int r);
#define yzCircle yzCircle3i

Draws an [unfilled] circle, centered at (x,y) with radius r, using the color and size speci-
fied in the selected window’s pen structure.

Returns 0 on success and -1 on failure.

int yzFillCircle3i(int x, int y, int r);
#define yzFillCircle yzFillCircle3i

Draws a filled circle, centered at (x,y) with radius r, using the color specified in the
selected window’s pen structure.

Returns 0 on success and -1 on failure.

int yzOval4i(int x, int y, int rx, int ry);
#define yzOval yzOval4i

Draws an [unfilled] oval, centered at (x,y) with radius rx in the horizontal direction and
ry in the vertical direction, using the color and size specified in the selected window’s pen
structure.

Returns 0 on success and -1 on failure.

int yzFillOval4i(int x, int y, int rx, int ry);
#define yzFillOval yzFillOval4i

Draws a filled oval, centered at (x,y) with radius rx in the horizontal direction and ry in
the vertical direction, using the color specified in the selected window’s pen structure.

Returns 0 on success and -1 on failure.

int yzOvalInRect2i2i(int x1, int y1, int x2, int y2);
#define yzOvalInRect yzOvalInRect4i

Draws an [unfilled] oval fitting just inside the box described by (x1,y1) (x2,y2), using the
color and size specified in the selected window’s pen structure.

Returns 0 on success and -1 on failure.

int yzFillOvalInRect2i2i(int x1, int y1, int x2, int y2);
#define yzFillOvalInRect yzFillOvalInRect4i

Draws a filled oval fitting just inside the box described by (x1,y1) (x2,y2), using the color
specified in the selected window’s pen structure.

Returns 0 on success and -1 on failure.

v. Bitmap functions

int yzDisplayBits5i1p(int x, int y, int dx, int dy, int rb, void *bits);
#define yzDisplayBits yzDisplayBits5i1p

Copies dx by dy bits of the bitmap image starting at location “bits” with rowbytes
parameter “rb” into the selected window at location x, y. Note that no conversion is per-
formed based on the bitdepth. The supplied bitmap is assumed to be in the same bitdepth as
the framebuffer device. To find the bitdepth of the framebuffer, use yzGetDepth().

Returns 0 on success and -1 on failure.

int yzGetDepth()

Returns the bitdepth of the framebuffer containing the selected window, or -1 on failure.

vi. Text functions

int yzSelectFont1s(char *font_name);
#define yzSelectFont yzSelectFont1s

Select the font named in the parameter “font_name” as the active font for the selected
window. The format of the name has not been determined yet; however, two aliases are
available at the present: “system” selects the system’s default font in a 12-point size, and
“fixed” selects a mono-spaced font in a 12-point size.

Returns 0 on success and -1 on failure (e.g. font not found).

int yzText2i1s(int x, int y, char *ptr);
#define yzText yzText2i1s

Renders ASCII characters from the font specified by the selected window’s “font” struc-
ture from the string “ptr” until a 0 is encountered, starting at horizontal position x with the
baseline at y. The characters are drawn in the color in the current window’s pen structure.

Returns 0 on success and -1 on failure.

int yzText2i1p1i(int x, int y, char *ptr, int len);

Renders “len” ASCII characters from the font specified by the selected window’s “font”
structure from the string “ptr,” starting at horizontal position x with the baseline at y. The
characters are rendered in the color specified by the current window’s pen structure.

Returns 0 on success and -1 on failure.

int yzLetterSize(int letter);

Returns the width, in pixels, of the specified ASCII character in the selected font. The
return value is unspecified if no window is selected.

int yzStringSize(char *ptr, int length);

Returns the width, in pixels, of the first “length” ASCII characters pointed to by “ptr” in
the selected font. The return value is unspecified if no window is selected.

vii. Event functions

The following constants represent the possible values of the “type” field of an event_t:
enum
{

YZ_IDLE = 0, // nothing happened
YZ_KEY_DOWN = 1, // a key was pressed; “key” is filled out.
YZ_KEY_UP = 3, // a key was released; “key” is filled out.
// mouse events - each of these fills out “button” and “mouse”, too:
YZ_MOUSE_DOWN = 6, // the mouse was pushed; “x,” and “y” are filled out.
YZ_MOUSE_DRAG = 7, // drag while clicked; “x,” “x2,” “y”, “y2” `````
YZ_MOUSE_UP = 8, // mouse click ended; “x,” and “y” are filled out.
// focus events
YZ_WINDOW_ACTIVATE = 20, // this window has kbd focus (i.e. was raised to top)
YZ_WINDOW_DEACTIVATE = 21 // this window lost kbd focus (i.e. was sent from top)

};

The following constants represent special values of the “key” field of an event_t. If the
key in question has an ASCII representation, its ASCII value is placed in the “key” field.
Otherwise, if it appears in the following list, the corresponding value is used. Otherwise,
YZ_KEYCODE_UNKNOWN is used.:

enum
{

YZ_KEYCODE_LEFT_ARROW = 255 + 1,
YZ_KEYCODE_RIGHT_ARROW = 255 + 2,
YZ_KEYCODE_DOWN_ARROW = 255 + 3,
YZ_KEYCODE_UP_ARROW = 255 + 4,

YZ_KEYCODE_CONTROL = 255 + 5,
YZ_KEYCODE_SHIFT = 255 + 6,
YZ_KEYCODE_OPTION = 255 + 7, // these two are the same
YZ_KEYCODE_ALT = 255 + 7,

YZ_KEYCODE_UNKNOWN = 65536
};

int yzAreEventsWaiting();

Returns the number of events for the selected window that are waiting for handling in
the event queue. If no window is selected, returns -1.

event_t yzGetEvent(int waitfor);

Returns the next event off of the selected window’s event queue. If the queue is empty,
the function waits up to “waitfor” milliseconds before returning a YZ_IDLE event. If at any
point during that wait an event becomes available, that event is returned immediately
instead.

int yzQueryKey(int key);

Returns -1 if the selected window is not currently focused. Otherwise, returns 1 if the
key indicated is pressed, and 0 if it is not pressed. See above for an explanation of the key
parameter (it’s the same as the “key” field in an event_t).

3. Examples
Initialization

All the examples that follow assume the inclusion of the following few lines of code at
the beginning:

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include <yz/window.h>
#include <yz/draw.h>

window_t *the_window;

initialize()
{

the_window = yzNewWindow("example", 400, 400);
if(!the_window || yzSelectWindow(the_window))
{

fprintf(stderr, "unable to create or select a new window. exiting.\n");
exit(-1);

}
yzPenColor(0, 0, 32000); //paint the window dark blue
yzRect(0, 0, 400, 400);

}

i. swoosh.c
The following program draws a blue and
red “swoosh” gradient (left, top):

main()
{

int i;

initialize();

for(i=0;i<400;i++)
{

yzPenColor(65535 - 120*i,
20000, 120*i);

yzLine(i, 0, 0, 400 - i);
yzLine(400 - i, 400, 400, i);
yzLine(400 - i, 400, 0, 400 - i);
yzLine(i, 0, 400, i);

}

/* wait until the mouse clicks
to dismiss */

while(yzQueryPointer(0, 0) < 2) { }
}

ii. stringart.c
This program runs the string-art
algorithm to create neat patterns of lines -
it takes parameters on the command-line
(left, bottom):

#define POINTS 37

main(int argc, char *argv[])
{

int i, j, k, n = 0;
int *inc;
float xp[POINTS], yp[POINTS], t;

initialize();

stringart.c

swoosh.c

for(i=0;i<POINTS;i++)
{

t = ((float)i)/POINTS * (3.1415926 * 2);
xp[i] = 200 - 180*cos(t);
yp[i] = 200 - 180*sin(t);

}
if(argc <= 1)
{

inc = malloc(sizeof(int) * (n = 1));
inc[0] = 1;

}
else
{

inc = malloc(sizeof(int) * (n = (argc - 1)));
for(i=0;i<n;i++)
{

inc[i] = atoi(argv[i+1]);
if(inc[i] == 0)
{

fprintf(stderr, "warning: argument %d is not a valid number\n", i+1);
inc[i] = 1;

}
}

}
for(k=0;k<n;k++)
{

i = 0; j = -1;
yzPenColor(65535 + 23847 * k, 39482 * k, 18734 * k);
while(j != 0)
{

j = (i + inc[k]) % POINTS;
yzLine(xp[i], yp[i], xp[j], yp[j]);
i = j;

}
}
while(yzQueryPointer(0, 0) < 2) { }

}

iii. Where to find more
For more examples, see the Applications section of the YZ-Windows website:

http://yz-windows.sourceforge.net/apps/

